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Anyone who is not shocked by quantum theory has not understood it.
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Exercise 1

Let H = L? (RQ). Let H be defined as

~

1
H:=—- (A, +Ay) + 5 (22 + y*) — Ay (1)

1
2
with D (1) = CZ (R?).
Prove that if A € (—1,1) then H is essentially self adjoint and study the spectrum of the
closure of H.
Hint: Prove that, with the right change of variables (z,y) — (w,z), H = H, + H, with
H,, only depending on w and H, only depending on z.

Proof. Consider the change of variables given as z := x + y, w = x — y. If we define
¢ (z,w) 1= (552, 25%) we get that

Aﬂ/f ($7y) = A:Jc [¢($+y,x—y)] = ax [(ang) (a:+y,x—y) + (aw¢) ($+y>x_y)]
= (A:0) (z +y, 2 —y) +2(0:000) (z + y, 2 —y) + (Awd) (z + y, 2 — y)

and analogously

Ayt (7,y) = (Aw®) ( +y, 2 —y) — 2(0:000) (x +y,x —y) + (Auwd) (z +y, v —y).

Now, it is easy to check that

As a consequence, we get that ) € CF (RQ) if and only if ¢ € CF (RQ) and moreover

~ 1—A 14+ A
o) = [~ @)+ 122 0 o+ |- @)+ E2? o o),
If we denote now H,, := —A + w?€? as the harmonic oscillator in one dimension with vari-

able €, we know that H,, is self adjoint with domain D,, := { feL?(R)| €2f, K2fe L? (R)}.
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As a consequence, the operator defined as H VIZN/2 ®id +1d®H 175 /2 I8 self-adjoint with
domain' D Via2 ® D NiESVoL Given that this operator corresponds to the closure of H ,
we get that H is essentially self-adjoint.

Now, in the exercise session we saw that

o (Hyio) ®1d+1d®H yii32) = 0 (Hyimze) + 0 (i),

and in class we saw that? o (H,) = w + 2wN, therefore we can conclude that

~ 1+ A 1—AX
U(Hcl):{V i "QW +mn+mmrn,meN}-

Exercise 2

Let A be a normal matrix (meaning that AA* = A*A) and p a polynomial in two variables.
Show by example that an eigenvector for p (A, A*) is not necessarily an eigenvector for A.

Remark: Even if eigenvectors of p (A, A*) do not correspond to eigenvectors of A, the
spectrum does, in the sense that

o (p(A4,A4%) ={p(AA) [ Aea (A)}. (2)

Proof. Consider the matrix A defined as

0 1+
A'_<—1—i 0 >

We can compute explicitly the adjoint matrix A* and we get
0 -1+ .
A = = jA.
( 1—i 0 ) '

As a consequence we get [A, A*] = i[A, A] = 0 and A is therefore normal. Let now
p(z,y) = zy. We get that p (A, A*) = iA%. Now, another explicit computation gives us

that
oo o (=2 0\ _[(20Y\ ..
p(A,A%) =iA —z( 0 _22.)—(0 2)—21d.

'Recall that given two vector subspaces Vi, Va of L? (R), we have that the space Vi ® V» is defined as
the closure in L2 (R2, dmdy) of all possible linear combinations of product of one element of Vi with one
element of Va, i.e.

N
%@VQ—{ZU;(I)U?(y)|U}EVh v3 € Vo, Vj—l,...,N}.
j=1

2Recall that 0 € N.



Now, given that p (A, A*) = 2id, both e; := (1,0)" and ey := (0.1)" are eigenvector,
but Ae; = —(1+i)ey and Aey = (1 + i) ey, which shows that this is in fact a counter
example.

O]

Exercise 3

Let I := [0,1] and consider H = L?(I). Define the operator H := —A with domain?
D (H) := H*(I) n C}, (I). Prove that H is self-adjoint and exhibit its spectral measure
explicitly.

Proof. Given that H is symmetric, we get that D (H) < D (H*). Let now ¢ € D (H*).
Recall that if

Fo (k) = F (k) = j &2 (0) di

I
is the Fourier series associated to 1. We then have that

F (0x) (k) = 2mike) (k)
F (Do) (k), = — (27k)* (k).

Also, we mentioned before the fact that the Fourier series acts as a unitary operator.
Consider now the state 15 defined as

v (.%') _ Z (27’(]6‘)21;(]43) 627rika:'

Clearly,\{ﬁ\[\ € D(H). From the definition of Fourier transform we get that oa (k) =
(2k)? 4 (k) for any |k| < A and 4 (k) = 0 otherwise. Moreover we have

A

[ealiegy = 2 @rk)* [ (k)

k=—A

2

Now, we know that [(Ha,¥)| < C ||[¥al 2y, therefore

A
C el o = [CHUA WY = | 3] (2nk)* da (k) (k)
k=—A
A 2
—| Y @k | ) ‘ = lall oy -
k=—A

3This definition makes sense, because we know that for any function ¥ € H? (I) we have that there is
a function v € C* (I) that coincides almost everywhere with 1. The definition of the domain is then the
set of functions ¢ € H? (I) such that the function 4 is periodic with derivative which is periodic.



This implies that suppey [¥al2¢) < €, and therefore 1 € H? (I). Now, consider ¢ €
D (H). Integrating by part we get

(o H* ) = (Hop, ) = f @) (¢) da

= o ([ (1) — (0] + L B (@t (x) da
— 2o (1) [0 (1) — 4 (0)] + 0 (1) [0 (1) — 245 (0)]
+ Lgo(a:)(—cﬁw (a:)) dx.

Considering functions such that ¢(0) = ¢ (0) = 0, we get that H*1 (z) = —02% (z). As
a consequence we get that for any function ¢ € D (H)

—02p (1) [ (1) =¥ (0)] + 0 (1) [0t} (1) = O2tp (0)] = 0.

as a consequence, ¥ (1) = v (0) and 0,9 (1) = ;¢ (0) and 1 € D (H) and therefore H is
self-adjoint.

We now get that for any ¢ € H and ¢ € D (H)

o, Hpy = > (2mk)* 3 (k) (k) = (o, Y. (2mk)? ) (k) €5 = (o, Y (27k)? P,

keN keN keN

where P, is the projector along the function e?7¥*%_ Therefore, given that H = >, (27rk)2 P,
the spectrum of H is given by o (H) = {4n?k?| k € N}.

We can then write H as

H= )] A[Pﬁjup_ﬁ},
)\EO’(H) 27 27

and therefore the projection-valued measure associated to H is given by

p(E)= > [Pﬁ +Pﬁ} :
\eE 27 27

for any F measurable subset of o (H).

O
Exercise 4
Let H be an Hilbert space and A, A_ € B(H) such that
[Ax, AT ] = id, (3)
[A+7A—] = [ +7Ai] = 0. (4)
Let moreover 1, ( € R, with n > { > 0. Define
H:=n (ATFAJr + A*_A,) +¢ (Aj‘rAf + A+A,) . (5)



Recall that if § = 1 arctanh (%), a=~/n2—C2 B=+n—C*—nand C; and C_ are
defined as

C4 := cosh (§) A+ + sinh (9) AL (6)
we get
[Cs.CE] = 1d, (7)
[C+, C_] = I:C_A'_,Ci] = 0, (8)
H=a(CiCi+C*C_) +p. (9)

a Consider X := A% A* — AL A_. Prove that X is skew-adjoint, meaning that X* =
-X.

b For any t € R consider U (¢) := e~*X. Prove that {U (t)},.p is a strongly continuous
one-parameter unitary group such that

U (t) AxU (—t) = cosh (t) Ay + sinh () AT. (10)

Hint: Consider for any v, p € H the function f: R — R defined as
fr () =, U (1) A+ U (=) ). (11)

Prove that f satisfies a closed second order differential equation and deduce (10).

¢ Suppose that there is a complete orthonormal system {¢,},  for H such that
A% Arp, = €tgn, with € € R. Prove that there exist a complete orthonormal
system {1, }, . for H such that

Hip = a (&) +6,) + B] tn. (12)

Proof. To prove a is enough to notice that, given that A4 are bounded and that AT* = A4,
then X* = (A% A* —A; A )" = A A, — A" A% = —X.

To prove b, define Y := ¢X; then the operator Y is is firstly bounded because X is,
and moreover is now self adjoint, indeed Y* = (iX)* = —iX* = iX = Y. We can
then construct via functional calculus the operator U (t) := e®¥ = e7'X as a strongly
continuous one-parameter unitary group. For any @ € H we then have, by the Stone

theorem, that
lim U(t+h)—U/(t)
h—0

Y =1YU (t)y = —XU (t) .

Now, consider v, ¢ € H. Define then f (¢) as in (11), we then get that, given that U ()
is a strongly continuous one-parameter unitary group, f is a differentiable function and
its derivative satisfies

FL () = 0U (=) 9, ALU (—t) )
= (XU (=), AL U (=) ) + U (=) ¥, AL XU (=) ¢)
= =, U () XALU (=) ) + @, U (t) A XU (—t) ¢)
==, U ) [X, AL]U () ¢).



Consider now [X, A ]; we get
[X,A,] = [A*A* — A A A,] = [A*A* A,] =[A* A ]A* = —A*,

and similarly we get

[Xa A*] =—Ay
[X,A%] =~ [X*4%] = [X, 4] = 4% = 4
[XA%] = (X 4] = (¥4 ] = A = A,

From the fact that [X, A+] is bounded we also have that f/ is again differentiable and
we get

L (t) = 0U (), ALU (—t) ) = =, U () [ X, AZ]U (—t) )
= =W, U@) (-AL)U(=t)p) = f(t).

As a consequence we get that f solves the following second order ordinary differential
equation

g = fi?
f+(0) =W, Arp),
fL(0) = (o, A% ).

From the fact that f{ = fi, we get fi (t) = f+ (0)cosh (¢) + fL (0)sinh (¢). As a conse-
quence we get that for any ¢, ¢ € H
.U (£) ALU (—t) @) = fi () = fu (0) cosh (£) + f (0) sinh (¢
= (¥, A1) cosh (t) + (¢, ATp) sinh (¢)
= (¥, [cosh (t) A+ + sinh (t) A% ] ),
and therefore we obtain (10).
To prove c, consider the pair of operators C+ defined as in 6. From point b if we define
U :=U (0) we get that
UALU* = cosh (0) A4 + sinh (0) A% = C+
UALU* = (UALU*)* = C%.

Using we can then rewrite the Hamiltonian as

H=a(CiCy +C*C_) +=U[a(ALA: + AAL) + 8] U*.

Define now 1, := Uwp,; then on the one hand we have (¢, V) = Upp, Upy) =
(n, U Upm) = {pn,Pm) = Onm 50 {Un},cy is an orthonormal system. Given that
{©n},en is also complete and U is bijective, we get that also {¢n},.y is a complete
orthonormal system. Now we then get
Hipp =Ula (AT Ay + A2 AL) + BlU* (Upy) = U [ (AL AL + AT AZ) o] + By,
=Ula(ef + &) ¢en] + B0 = [a(ef + &) + B8] ¥,

which concludes the proof.



