

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 19.05.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Anyone who is not shocked by quantum theory has not understood it.
Niels Bohr

Exercise 1

Let $\mathcal{H} = L^2(\mathbb{R}^2)$. Let \tilde{H} be defined as

$$\tilde{H} := -\frac{1}{2}(\Delta_x + \Delta_y) + \frac{1}{2}(x^2 + y^2) - \lambda xy \quad (1)$$

with $D(\tilde{H}) = C_c^\infty(\mathbb{R}^2)$.

Prove that if $\lambda \in (-1, 1)$ then \tilde{H} is essentially self adjoint and study the spectrum of the closure of \tilde{H} .

Hint: Prove that, with the right change of variables $(x, y) \rightarrow (w, z)$, $\tilde{H} = H_w + H_z$ with H_w only depending on w and H_z only depending on z .

Proof. Consider the change of variables given as $z := x + y$, $w = x - y$. If we define $\phi(z, w) := \psi\left(\frac{z+w}{2}, \frac{z-w}{2}\right)$ we get that

$$\begin{aligned} \Delta_x \psi(x, y) &= \Delta_x [\phi(x + y, x - y)] = \partial_x [(\partial_z \phi)(x + y, x - y) + (\partial_w \phi)(x + y, x - y)] \\ &= (\Delta_z \phi)(x + y, x - y) + 2(\partial_z \partial_w \phi)(x + y, x - y) + (\Delta_w \phi)(x + y, x - y) \end{aligned}$$

and analogously

$$\Delta_y \psi(x, y) = (\Delta_w \phi)(x + y, x - y) - 2(\partial_z \partial_w \phi)(x + y, x - y) + (\Delta_z \phi)(x + y, x - y).$$

Now, it is easy to check that

$$\begin{aligned} x^2 + y^2 &= \frac{z^2 + w^2}{2} \\ xy &= \frac{z^2 - y^2}{4}. \end{aligned}$$

As a consequence, we get that $\psi \in C_c^\infty(\mathbb{R}^2)$ if and only if $\phi \in C_c^\infty(\mathbb{R}^2)$ and moreover

$$\tilde{H} \psi(x, y) = \left[-(\Delta_z \phi) + \frac{1-\lambda}{4} z^2 \right] \phi(z, w) + \left[-(\Delta_w \phi) + \frac{1+\lambda}{4} w^2 \right] \phi(z, w).$$

If we denote now $H_\omega := -\Delta + \omega^2 \xi^2$ as the harmonic oscillator in one dimension with variable ξ , we know that H_ω is self adjoint with domain $D_\omega := \{f \in L^2(\mathbb{R}) \mid \xi^2 f, k^2 \hat{f} \in L^2(\mathbb{R})\}$.

As a consequence, the operator defined as $H_{\sqrt{1-\lambda}/2} \otimes \text{id} + \text{id} \otimes H_{\sqrt{1+\lambda}/2}$ is self-adjoint with domain¹ $D_{\sqrt{1-\lambda}/2} \otimes D_{\sqrt{1+\lambda}/2}$. Given that this operator corresponds to the closure of \tilde{H} , we get that \tilde{H} is essentially self-adjoint.

Now, in the exercise session we saw that

$$\sigma(H_{\sqrt{1-\lambda}/2} \otimes \text{id} + \text{id} \otimes H_{\sqrt{1+\lambda}/2}) = \overline{\sigma(H_{\sqrt{1-\lambda}/2}) + \sigma(H_{\sqrt{1+\lambda}/2})},$$

and in class we saw that² $\sigma(H_\omega) = \omega + 2\omega\mathbb{N}$, therefore we can conclude that

$$\sigma(\tilde{H}^{\text{cl}}) = \left\{ \frac{\sqrt{1+\lambda} + \sqrt{1-\lambda}}{2} + \sqrt{1+\lambda}n + \sqrt{1-\lambda}m \mid n, m \in \mathbb{N} \right\}.$$

□

Exercise 2

Let A be a normal matrix (meaning that $AA^* = A^*A$) and p a polynomial in two variables. Show by example that an eigenvector for $p(A, A^*)$ is not necessarily an eigenvector for A .

Remark: Even if eigenvectors of $p(A, A^*)$ do not correspond to eigenvectors of A , the spectrum does, in the sense that

$$\sigma(p(A, A^*)) = \{p(\lambda, \lambda^*) \mid \lambda \in \sigma(A)\}. \quad (2)$$

Proof. Consider the matrix A defined as

$$A := \begin{pmatrix} 0 & 1+i \\ -1-i & 0 \end{pmatrix}.$$

We can compute explicitly the adjoint matrix A^* and we get

$$A^* = \begin{pmatrix} 0 & -1+i \\ 1-i & 0 \end{pmatrix} = iA.$$

As a consequence we get $[A, A^*] = i[A, A] = 0$ and A is therefore normal. Let now $p(x, y) = xy$. We get that $p(A, A^*) = iA^2$. Now, another explicit computation gives us that

$$p(A, A^*) = iA^2 = i \begin{pmatrix} -2i & 0 \\ 0 & -2i \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2\text{id}.$$

¹Recall that given two vector subspaces V_1, V_2 of $L^2(\mathbb{R})$, we have that the space $V_1 \otimes V_2$ is defined as the closure in $L^2(\mathbb{R}^2, dx dy)$ of all possible linear combinations of product of one element of V_1 with one element of V_2 , i.e.

$$V_1 \otimes V_2 = \overline{\left\{ \sum_{j=1}^N v_j^1(x) v_j^2(y) \mid v_j^1 \in V_1, v_j^2 \in V_2, \forall j = 1, \dots, N \right\}}.$$

²Recall that $0 \in \mathbb{N}$.

Now, given that $p(A, A^*) = 2 \text{id}$, both $e_1 := (1, 0)^T$ and $e_2 := (0, 1)^T$ are eigenvectors, but $Ae_1 = -(1+i)e_2$ and $Ae_2 = (1+i)e_1$, which shows that this is in fact a counter example.

□

Exercise 3

Let $I := [0, 1]$ and consider $\mathcal{H} = L^2(I)$. Define the operator $H := -\Delta$ with domain³ $D(H) := H^2(I) \cap C_{\text{per}}^1(I)$. Prove that H is self-adjoint and exhibit its spectral measure explicitly.

Proof. Given that H is symmetric, we get that $D(H) \subseteq D(H^*)$. Let now $\psi \in D(H^*)$. Recall that if

$$\mathcal{F}\psi(k) = \hat{f}(k) = \int_I e^{-2\pi i k x} f(x) dx$$

is the Fourier series associated to ψ . We then have that

$$\begin{aligned} \mathcal{F}(\partial_x \psi)(k) &= 2\pi i k \hat{\psi}(k) \\ \mathcal{F}(\Delta_x \psi)(k) &= -(2\pi k)^2 \hat{\psi}(k). \end{aligned}$$

Also, we mentioned before the fact that the Fourier series acts as a unitary operator. Consider now the state ψ_Λ defined as

$$\psi_\Lambda(x) = \sum_{k=-\Lambda}^{\Lambda} (2\pi k)^2 \hat{\psi}(k) e^{2\pi i k x}.$$

Clearly $\hat{\psi}_\Lambda \in D(H)$. From the definition of Fourier transform we get that $\hat{\psi}_\Lambda(k) = (2\pi k)^2 \hat{\psi}(k)$ for any $|k| \leq \Lambda$ and $\hat{\psi}_\Lambda(k) = 0$ otherwise. Moreover we have

$$\|\psi_\Lambda\|_{L^2(I)}^2 = \sum_{k=-\Lambda}^{\Lambda} (2\pi k)^4 |\hat{\psi}(k)|^2.$$

Now, we know that $|\langle H\psi_\Lambda, \psi \rangle| \leq C \|\psi_\Lambda\|_{L^2(I)}$, therefore

$$\begin{aligned} C \|\psi_\Lambda\|_{L^2(I)} &\geq |\langle H\psi_\Lambda, \psi \rangle| = \left| \sum_{k=-\Lambda}^{\Lambda} (2\pi k)^2 \overline{\hat{\psi}_\Lambda(k)} \hat{\psi}(k) \right| \\ &= \left| \sum_{k=-\Lambda}^{\Lambda} (2\pi k)^4 |\hat{\psi}(k)|^2 \right| = \|\psi_\Lambda\|_{L^2(I)}. \end{aligned}$$

³This definition makes sense, because we know that for any function $\psi \in H^2(I)$ we have that there is a function $\tilde{\psi} \in C^1(I)$ that coincides almost everywhere with ψ . The definition of the domain is then the set of functions $\psi \in H^2(I)$ such that the function $\tilde{\psi}$ is periodic with derivative which is periodic.

This implies that $\sup_{\Lambda \in \mathbb{N}} \|\psi_\Lambda\|_{L^2(I)} \leq C$, and therefore $\psi \in H^2(I)$. Now, consider $\varphi \in D(H)$. Integrating by part we get

$$\begin{aligned} \langle \varphi, H^* \psi \rangle &= \langle H \varphi, \psi \rangle = \int_I \overline{-\partial_x^2 \varphi(x)} \psi(x) dx \\ &= -\partial_x \varphi(1) [\psi(1) - \psi(0)] + \int_I \overline{\partial_x \varphi(x)} \partial_x \psi(x) dx \\ &= -\partial_x \varphi(1) [\psi(1) - \psi(0)] + \varphi(1) [\partial_x \psi(1) - \partial_x \psi(0)] \\ &\quad + \int_I \overline{\varphi(x)} (-\partial_x^2 \psi(x)) dx. \end{aligned}$$

Considering functions such that $\varphi(0) = \partial_x \varphi(0) = 0$, we get that $H^* \psi(x) = -\partial_x^2 \psi(x)$. As a consequence we get that for any function $\psi \in D(H)$

$$-\partial_x \varphi(1) [\psi(1) - \psi(0)] + \varphi(1) [\partial_x \psi(1) - \partial_x \psi(0)] = 0.$$

as a consequence, $\psi(1) = \psi(0)$ and $\partial_x \psi(1) = \partial_x \psi(0)$ and $\psi \in D(H)$ and therefore H is self-adjoint.

We now get that for any $\varphi \in \mathcal{H}$ and $\psi \in D(H)$

$$\langle \varphi, H \psi \rangle = \sum_{k \in \mathbb{N}} (2\pi k)^2 \overline{\widehat{\varphi}(k)} \widehat{\psi}(k) = \langle \varphi, \sum_{k \in \mathbb{N}} (2\pi k)^2 \widehat{\psi}(k) e^{2\pi i k x} \rangle = \langle \varphi, \sum_{k \in \mathbb{N}} (2\pi k)^2 P_k \psi \rangle,$$

where P_k is the projector along the function $e^{2\pi i k x}$. Therefore, given that $H = \sum_{k \in \mathbb{N}} (2\pi k)^2 P_k$, the spectrum of H is given by $\sigma(H) = \{4\pi^2 k^2 \mid k \in \mathbb{N}\}$.

We can then write H as

$$H = \sum_{\lambda \in \sigma(H)} \lambda \left[P_{\frac{\sqrt{\lambda}}{2\pi}} + P_{-\frac{\sqrt{\lambda}}{2\pi}} \right],$$

and therefore the projection-valued measure associated to H is given by

$$\mu(E) = \sum_{\lambda \in E} \lambda \left[P_{\frac{\sqrt{\lambda}}{2\pi}} + P_{-\frac{\sqrt{\lambda}}{2\pi}} \right],$$

for any E measurable subset of $\sigma(H)$.

□

Exercise 4

Let \mathcal{H} be an Hilbert space and $A_+, A_- \in \mathcal{B}(\mathcal{H})$ such that

$$[A_\pm, A_\pm^*] = \text{id}, \tag{3}$$

$$[A_+, A_-] = [A_+, A_-^*] = 0. \tag{4}$$

Let moreover $\eta, \zeta \in \mathbb{R}$, with $\eta > \zeta \geq 0$. Define

$$H := \eta (A_+^* A_+ + A_-^* A_-) + \zeta (A_+^* A_-^* + A_+ A_-). \tag{5}$$

Recall that if $\theta = \frac{1}{2} \operatorname{arctanh} \left(\frac{\zeta}{\eta} \right)$, $\alpha = \sqrt{\eta^2 - \zeta^2}$, $\beta = \sqrt{\eta^2 - \zeta^2} - \eta$ and C_+ and C_- are defined as

$$C_{\pm} := \cosh(\theta) A_{\pm} + \sinh(\theta) A_{\mp}^* \quad (6)$$

we get

$$[C_{\pm}, C_{\pm}^*] = \operatorname{id}, \quad (7)$$

$$[C_+, C_-] = [C_+, C_-^*] = 0, \quad (8)$$

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta. \quad (9)$$

a Consider $X := A_+^* A_-^* - A_+ A_-$. Prove that X is skew-adjoint, meaning that $X^* = -X$.

b For any $t \in \mathbb{R}$ consider $U(t) := e^{-tX}$. Prove that $\{U(t)\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group such that

$$U(t) A_{\pm} U(-t) = \cosh(t) A_{\pm} + \sinh(t) A_{\mp}^*. \quad (10)$$

Hint: Consider for any $\psi, \varphi \in \mathcal{H}$ the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$f_{\pm}(t) := \langle \psi, U(t) A_{\pm} U(-t) \varphi \rangle. \quad (11)$$

Prove that f satisfies a closed second order differential equation and deduce (10).

c Suppose that there is a complete orthonormal system $\{\varphi_n\}_{n \in \mathbb{N}}$ for \mathcal{H} such that $A_{\pm}^* A_{\pm} \varphi_n = \epsilon_n^{\pm} \varphi_n$, with $\epsilon_n^{\pm} \in \mathbb{R}$. Prove that there exist a complete orthonormal system $\{\psi_n\}_{n \in \mathbb{N}}$ for \mathcal{H} such that

$$H \psi_n = [\alpha (\epsilon_n^+ + \epsilon_n^-) + \beta] \psi_n. \quad (12)$$

Proof. To prove **a** is enough to notice that, given that A_{\pm} are bounded and that $A_{\pm}^{**} = A_{\pm}$, then $X^* = (A_+^* A_-^* - A_+ A_-)^* = A_- A_+ - A_-^* A_+^* = -X$.

To prove **b**, define $Y := iX$; then the operator Y is firstly bounded because X is, and moreover is now self adjoint, indeed $Y^* = (iX)^* = -iX^* = iX = Y$. We can then construct via functional calculus the operator $U(t) := e^{itY} \equiv e^{-tX}$ as a strongly continuous one-parameter unitary group. For any $\psi \in \mathcal{H}$ we then have, by the Stone theorem, that

$$\lim_{h \rightarrow 0} \frac{U(t+h) - U(t)}{h} \psi = iYU(t) \psi = -XU(t) \psi.$$

Now, consider $\psi, \varphi \in \mathcal{H}$. Define then $f_{\pm}(t)$ as in (11), we then get that, given that $U(t)$ is a strongly continuous one-parameter unitary group, f is a differentiable function and its derivative satisfies

$$\begin{aligned} f'_{\pm}(t) &= \partial_t \langle U(-t) \psi, A_{\pm} U(-t) \varphi \rangle \\ &= \langle XU(-t) \psi, A_{\pm} U(-t) \varphi \rangle + \langle U(-t) \psi, A_{\pm} XU(-t) \varphi \rangle \\ &= -\langle \psi, U(t) X A_{\pm} U(-t) \varphi \rangle + \langle \psi, U(t) A_{\pm} XU(-t) \varphi \rangle \\ &= -\langle \psi, U(t) [X, A_{\pm}] U(-t) \varphi \rangle. \end{aligned}$$

Consider now $[X, A_+]$; we get

$$[X, A_+] = [A_+^* A_-^* - A_+ A_-, A_+] = [A_+^* A_-^*, A_+] = [A_+^*, A_+] A_-^* = -A_-^*,$$

and similarly we get

$$\begin{aligned} [X, A_-] &= -A_+ \\ [X, A_+^*] &= -[X^*, A_+]^* = [X, A_+]^* = -A_-^{**} = -A_- \\ [X, A_-^*] &= -[X^*, A_-^*] = [X, A_-]^* = -A_+^{**} = -A_+. \end{aligned}$$

From the fact that $[X, A_\pm]$ is bounded we also have that f'_\pm is again differentiable and we get

$$\begin{aligned} f''_\pm(t) &= \partial_t \langle U(-t) \psi, A_\mp^* U(-t) \varphi \rangle = -\langle \psi, U(t) [X, A_\mp] U(-t) \varphi \rangle \\ &= -\langle \psi, U(t) (-A_\pm) U(-t) \varphi \rangle = f(t). \end{aligned}$$

As a consequence we get that f solves the following second order ordinary differential equation

$$\begin{cases} f''_\pm = f_\pm, \\ f_\pm(0) = \langle \psi, A_\pm \varphi \rangle, \\ f'_\pm(0) = \langle \psi, A_\mp^* \varphi \rangle. \end{cases}$$

From the fact that $f''_\pm = f_\pm$, we get $f_\pm(t) = f_\pm(0) \cosh(t) + f'_\pm(0) \sinh(t)$. As a consequence we get that for any $\psi, \varphi \in \mathcal{H}$

$$\begin{aligned} \langle \psi, U(t) A_\pm U(-t) \varphi \rangle &= f_\pm(t) = f_\pm(0) \cosh(t) + f'_\pm(0) \sinh(t) \\ &= \langle \psi, A_\pm \varphi \rangle \cosh(t) + \langle \psi, A_\mp^* \varphi \rangle \sinh(t) \\ &= \langle \psi, [\cosh(t) A_\pm + \sinh(t) A_\mp^*] \varphi \rangle, \end{aligned}$$

and therefore we obtain (10).

To prove **c**, consider the pair of operators C_\pm defined as in 6. From point **b** if we define $U := U(\theta)$ we get that

$$\begin{aligned} U A_\pm U^* &= \cosh(\theta) A_\pm + \sinh(\theta) A_\mp^* = C_\pm \\ U A_\pm^* U^* &= (U A_\pm U^*)^* = C_\pm^*. \end{aligned}$$

Using we can then rewrite the Hamiltonian as

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta = U [\alpha (A_+^* A_+ + A_-^* A_-) + \beta] U^*.$$

Define now $\psi_n := U \varphi_n$; then on the one hand we have $\langle \psi_n, \psi_m \rangle = \langle U \varphi_n, U \varphi_m \rangle = \langle \varphi_n, U^* U \varphi_m \rangle = \langle \varphi_n, \varphi_m \rangle = \delta_{n,m}$ so $\{\psi_n\}_{n \in \mathbb{N}}$ is an orthonormal system. Given that $\{\varphi_n\}_{n \in \mathbb{N}}$ is also complete and U is bijective, we get that also $\{\psi_n\}_{n \in \mathbb{N}}$ is a complete orthonormal system. Now we then get

$$\begin{aligned} H \psi_n &= U [\alpha (A_+^* A_+ + A_-^* A_-) + \beta] U^* (U \varphi_n) = U [\alpha (A_+^* A_+ + A_-^* A_-) \varphi_n] + \beta \psi_n \\ &= U [\alpha (\epsilon_n^+ + \epsilon_n^-) \varphi_n] + \beta \psi_n = [\alpha (\epsilon_n^+ + \epsilon_n^-) + \beta] \psi_n, \end{aligned}$$

which concludes the proof. □