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Exercise 1

Let H “ L2
`

R2
˘

. Let rH be defined as

rH :“ ´
1

2
p∆x `∆yq `

1

2

`

x2 ` y2
˘

´ λxy (1)

with D
´

rH
¯

“ C8c
`

R2
˘

.

Prove that if λ P p´1, 1q then rH is essentially self adjoint and study the spectrum of the
closure of rH.

Hint: Prove that, with the right change of variables px, yq Ñ pw, zq, rH “ Hw `Hz with
Hw only depending on w and Hz only depending on z.

Proof. Consider the change of variables given as z :“ x ` y, w “ x ´ y. If we define
φ pz, wq :“ ψ

`

z`w
2 , z´w2

˘

we get that

∆xψ px, yq “ ∆x rφ px` y, x´ yqs “ Bx rpBzφq px` y, x´ yq ` pBwφq px` y, x´ yqs

“ p∆zφq px` y, x´ yq ` 2 pBzBwφq px` y, x´ yq ` p∆wφq px` y, x´ yq

and analogously

∆yψ px, yq “ p∆wφq px` y, x´ yq ´ 2 pBzBwφq px` y, x´ yq ` p∆wφq px` y, x´ yq .

Now, it is easy to check that

x2 ` y2 “
z2 ` w2

2

xy “
z2 ´ y2

4
.

As a consequence, we get that ψ P C8c
`

R2
˘

if and only if φ P C8c
`

R2
˘

and moreover

rHψ px, yq “

„

´p∆zφq `
1´ λ

4
z2



φ pz, wq `

„

´p∆wφq `
1` λ

4
w2



φ pz, wq .

If we denote now Hω :“ ´∆`ω2ξ2 as the harmonic oscillator in one dimension with vari-

able ξ, we know thatHω is self adjoint with domainDω :“
!

f P L2 pRq | ξ2f, k2
pf P L2 pRq

)

.
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As a consequence, the operator defined as H?1´λ{2b id` idbH?1`λ{2 is self-adjoint with

domain1 D?1´λ{2 bD?1`λ{2. Given that this operator corresponds to the closure of rH,

we get that rH is essentially self-adjoint.

Now, in the exercise session we saw that

σ
´

H?1´λ{2 b id` idbH?1`λ{2

¯

“ σ
´

H?1´λ{2

¯

` σ
´

H?1`λ{2

¯

,

and in class we saw that2 σ pHωq “ ω ` 2ωN, therefore we can conclude that

σ
´

rHcl
¯

“

"
?

1` λ`
?

1´ λ

2
`
?

1` λn`
?

1´ λm| n,m P N
*

.

Exercise 2

Let A be a normal matrix (meaning that AA˚ “ A˚A) and p a polynomial in two variables.
Show by example that an eigenvector for p pA,A˚q is not necessarily an eigenvector for A.

Remark: Even if eigenvectors of p pA,A˚q do not correspond to eigenvectors of A, the
spectrum does, in the sense that

σ pp pA,A˚qq “ tp pλ, λ˚q | λ P σ pAqu . (2)

Proof. Consider the matrix A defined as

A :“

ˆ

0 1` i
´1´ i 0

˙

.

We can compute explicitly the adjoint matrix A˚ and we get

A˚ “

ˆ

0 ´1` i
1´ i 0

˙

“ iA.

As a consequence we get rA,A˚s “ i rA,As “ 0 and A is therefore normal. Let now
p px, yq “ xy. We get that p pA,A˚q “ iA2. Now, another explicit computation gives us
that

p pA,A˚q “ iA2 “ i

ˆ

´2i 0
0 ´2i

˙

“

ˆ

2 0
0 2

˙

“ 2 id .

1Recall that given two vector subspaces V1, V2 of L2
pRq, we have that the space V1 b V2 is defined as

the closure in L2
`

R2, dxdy
˘

of all possible linear combinations of product of one element of V1 with one
element of V2, i.e.

V1 b V2 “

#

N
ÿ

j“1

v1j pxq v
2
j pyq | v

1
j P V1, v2j P V2, @j “ 1, . . . , N

+

.

2Recall that 0 P N.
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Now, given that p pA,A˚q “ 2 id, both e1 :“ p1, 0qT and e2 :“ p0.1qT are eigenvector,
but Ae1 “ ´p1` iq e2 and Ae2 “ p1` iq e1, which shows that this is in fact a counter
example.

Exercise 3

Let I :“ r0, 1s and consider H “ L2 pIq. Define the operator H :“ ´∆ with domain3

D pHq :“ H2 pIq X C1
per pIq. Prove that H is self-adjoint and exhibit its spectral measure

explicitly.

Proof. Given that H is symmetric, we get that D pHq Ď D pH˚q. Let now ψ P D pH˚q.
Recall that if

Fψ pkq “ pf pkq “

ż

I
e´2πikxf pxq dx

is the Fourier series associated to ψ. We then have that

F pBxψq pkq “ 2πik pψ pkq

F p∆xψq pkq , “ ´p2πkq
2
pψ pkq .

Also, we mentioned before the fact that the Fourier series acts as a unitary operator.
Consider now the state ψΛ defined as

ψΛ pxq “
Λ
ÿ

k“´Λ

p2πkq2 pψ pkq e2πikx.

Clearly pψΛ P D pHq. From the definition of Fourier transform we get that pψΛ pkq “
p2πkq2 pψ pkq for any |k| ď Λ and pψΛ pkq “ 0 otherwise. Moreover we have

}ψΛ}
2
L2pIq “

Λ
ÿ

k“´Λ

p2πkq4
ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
.

Now, we know that |xHψΛ, ψy| ď C }ψΛ}L2pIq, therefore

C }ψΛ}L2pIq ě |xHψΛ, ψy| “

ˇ

ˇ

ˇ

ˇ

ˇ

Λ
ÿ

k“´Λ

p2πkq2 pψΛ pkq pψ pkq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

Λ
ÿ

k“´Λ

p2πkq4
ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
ˇ

ˇ

ˇ

ˇ

ˇ

“ }ψΛ}L2pIq .

3This definition makes sense, because we know that for any function ψ P H2
pIq we have that there is

a function rψ P C1
pIq that coincides almost everywhere with ψ. The definition of the domain is then the

set of functions ψ P H2
pIq such that the function rψ is periodic with derivative which is periodic.
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This implies that supΛPN }ψΛ}L2pIq ď C, and therefore ψ P H2 pIq. Now, consider ϕ P
D pHq. Integrating by part we get

xϕ,H˚ψy “ xHϕ,ψy “

ż

I
´B2

xϕ pxqψ pxq dx

“ ´Bxϕ p1q rψ p1q ´ ψ p0qs `

ż

I
Bxϕ pxqBxψ pxq dx

“ ´Bxϕ p1q rψ p1q ´ ψ p0qs ` ϕ p1q rBxψ p1q ´ Bxψ p0qs

`

ż

I
ϕ pxq

`

´B2
xψ pxq

˘

dx.

Considering functions such that ϕp0q “ Bxϕ p0q “ 0, we get that H˚ψ pxq “ ´B2
xψ pxq. As

a consequence we get that for any function ψ P D pHq

´Bxϕ p1q rψ p1q ´ ψ p0qs ` ϕ p1q rBxψ p1q ´ Bxψ p0qs “ 0.

as a consequence, ψ p1q “ ψ p0q and Bxψ p1q “ Bxψ p0q and ψ P D pHq and therefore H is
self-adjoint.

We now get that for any ϕ P H and ψ P D pHq

xϕ,Hψy “
ÿ

kPN
p2πkq2 pϕ pkq pψ pkq “ xϕ,

ÿ

kPN
p2πkq2 pψ pkq e2πikxy “ xϕ,

ÿ

kPN
p2πkq2 Pkψy,

where Pk is the projector along the function e2πikx. Therefore, given thatH “
ř

kPN p2πkq
2 Pk,

the spectrum of H is given by σ pHq “
 

4π2k2| k P N
(

.

We can then write H as

H “
ÿ

λPσpHq

λ

„

P?λ
2π

` P
´
?
λ

2π



,

and therefore the projection-valued measure associated to H is given by

µ pEq “
ÿ

λPE

λ

„

P?λ
2π

` P
´
?
λ

2π



,

for any E measurable subset of σ pHq.

Exercise 4

Let H be an Hilbert space and A`, A´ P B pHq such that

“

A˘, A
˚
˘

‰

“ id, (3)

rA`, A´s “
“

A`, A
˚
´

‰

“ 0. (4)

Let moreover η, ζ P R, with η ą ζ ě 0. Define

H :“ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

. (5)

4



Recall that if θ “ 1
2 arctanh

´

ζ
η

¯

, α “
a

η2 ´ ζ2, β “
a

η2 ´ ζ2 ´ η and C` and C´ are

defined as
C˘ :“ cosh pθqA˘ ` sinh pθqA˚¯ (6)

we get

“

C˘, C
˚
˘

‰

“ id, (7)

rC`, C´s “
“

C`, C
˚
´

‰

“ 0, (8)

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β. (9)

a Consider X :“ A˚`A
˚
´ ´ A`A´. Prove that X is skew-adjoint, meaning that X˚ “

´X.

b For any t P R consider U ptq :“ e´tX . Prove that tU ptqutPR is a strongly continuous
one-parameter unitary group such that

U ptqA˘U p´tq “ cosh ptqA˘ ` sinh ptqA˚¯. (10)

Hint: Consider for any ψ,ϕ P H the function f : RÑ R defined as

f˘ ptq :“ xψ,U ptqA˘U p´tqϕy. (11)

Prove that f satisfies a closed second order differential equation and deduce (10).

c Suppose that there is a complete orthonormal system tϕnunPN for H such that
A˚˘A˘ϕn “ ε˘nϕn, with ε˘n P R. Prove that there exist a complete orthonormal
system tψnunPN for H such that

Hψn “
“

α
`

ε`n ` ε
´
n

˘

` β
‰

ψn. (12)

Proof. To prove a is enough to notice that, given that A˘ are bounded and that A˚˚˘ “ A˘,
then X˚ “

`

A˚`A
˚
´ ´A`A´

˘˚
“ A´A` ´A

˚
´A

˚
` “ ´X.

To prove b, define Y :“ iX; then the operator Y is is firstly bounded because X is,
and moreover is now self adjoint, indeed Y ˚ “ piXq˚ “ ´iX˚ “ iX “ Y . We can
then construct via functional calculus the operator U ptq :“ eitY ” e´tX as a strongly
continuous one-parameter unitary group. For any ψ P H we then have, by the Stone
theorem, that

lim
hÑ0

U pt` hq ´ U ptq

h
ψ “ iY U ptqψ “ ´XU ptqψ.

Now, consider ψ,ϕ P H. Define then f˘ ptq as in (11), we then get that, given that U ptq
is a strongly continuous one-parameter unitary group, f is a differentiable function and
its derivative satisfies

f 1˘ ptq “ BtxU p´tqψ,A˘U p´tqϕy

“ xXU p´tqψ,A˘U p´tqϕy ` xU p´tqψ,A˘XU p´tqϕy

“ ´xψ,U ptqXA˘U p´tqϕy ` xψ,U ptqA˘XU p´tqϕy

“ ´xψ,U ptq rX,A˘sU p´tqϕy.
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Consider now rX,A`s; we get

rX,A`s “
“

A˚`A
˚
´ ´A`A´, A`

‰

“
“

A˚`A
˚
´, A`

‰

“
“

A˚`, A`
‰

A˚´ “ ´A
˚
´,

and similarly we get

rX,A´s “ ´A`
“

X,A˚`
‰

“ ´
“

X˚, A˚`
‰

“ rX,A`s
˚
“ ´A˚˚´ “ ´A´

“

X,A˚´
‰

“ ´
“

X˚, A˚´
‰

“ rX,A´s
˚
“ ´A˚˚` “ ´A`.

From the fact that rX,A˘s is bounded we also have that f 1˘ is again differentiable and
we get

f2˘ ptq “ BtxU p´tqψ,A
˚
¯U p´tqϕy “ ´xψ,U ptq

“

X,A˚¯
‰

U p´tqϕy

“ ´xψ,U ptq p´A˘qU p´tqϕy “ f ptq .

As a consequence we get that f solves the following second order ordinary differential
equation

$

&

%

f2˘ “ f˘,
f˘ p0q “ xψ,A˘ϕy,
f 1˘ p0q “ xψ,A

˚
¯ϕy.

From the fact that f2˘ “ f˘, we get f˘ ptq “ f˘ p0q cosh ptq ` f 1˘ p0q sinh ptq. As a conse-
quence we get that for any ψ, ϕ P H

xψ,U ptqA˘U p´tqϕy “ f˘ ptq “ f˘ p0q cosh ptq ` f 1˘ p0q sinh ptq

“ xψ,A˘ϕy cosh ptq ` xψ,A˚¯ϕy sinh ptq

“ xψ,
“

cosh ptqA˘ ` sinh ptqA˚¯
‰

ϕy,

and therefore we obtain (10).

To prove c, consider the pair of operators C˘ defined as in 6. From point b if we define
U :“ U pθq we get that

UA˘U
˚ “ cosh pθqA˘ ` sinh pθqA˚¯ “ C˘

UA˚˘U
˚ “ pUA˘U

˚q
˚
“ C˚˘.

Using we can then rewrite the Hamiltonian as

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β “ U
“

α
`

A˚`A` `A
˚
´A´

˘

` β
‰

U˚.

Define now ψn :“ Uϕn; then on the one hand we have xψn, ψmy “ xUϕn, Uϕmy “
xϕn, U

˚Uϕmy “ xϕn, ϕmy “ δn,m so tψnunPN is an orthonormal system. Given that
tϕnunPN is also complete and U is bijective, we get that also tψnunPN is a complete
orthonormal system. Now we then get

Hψn “ U
“

α
`

A˚`A` `A
˚
´A´

˘

` β
‰

U˚ pUϕnq “ U
“

α
`

A˚`A` `A
˚
´A´

˘

ϕn
‰

` βψn

“ U
“

α
`

ε`n ` ε
´
n

˘

ϕn
‰

` βψn “
“

α
`

ε`n ` ε
´
n

˘

` β
‰

ψn,

which concludes the proof.

6


